39 research outputs found

    Nonlinear vibration and Supersonic Flutter of Conical Shells

    Get PDF
    RĂ©sumĂ© Les coques coniques sont utilisĂ©es dans la conception d’une variĂ©tĂ© de composants de vĂ©hicules aĂ©rospatiaux, allant des rĂ©servoirs de carburant externes des avions de chasse aux lanceurs de satellites. Par consĂ©quent, l’analyse de leurs comportements dynamique et aĂ©roĂ©lastique est de grande importance pour la conception de ces structures. Depuis que des Ă©tudes expĂ©rimentales ont rapportĂ© que le flottement supersonique se produit Ă  des amplitudes ayant le mĂȘme ordre de grandeur que l’épaisseur de la coque, les thĂ©ories gĂ©omĂ©triques non-linĂ©aires des coques sont de plus en plus utilisĂ©es. Ces derniĂšres permettent une meilleure comprĂ©hension du phĂ©nomĂšne et des rĂ©sultats plus prĂ©cis. Plusieurs thĂ©ories des coques basĂ©es sur diffĂ©rentes hypothĂšses simplificatrices de la cinĂ©matique non linĂ©aire ont Ă©tĂ© dĂ©veloppĂ©es au cours des derniĂšres dĂ©cennies, y compris les thĂ©ories des coques de Donnell, de Sanders et de Novozhilov. Ces thĂ©ories se distinguent principalement par leurs diffĂ©rentes hypothĂšses dans le dĂ©veloppement des relations de dĂ©placements Ă  la surface moyenne de la coque. La thĂ©orie de Donnell a introduit l’effet non linĂ©aire du second ordre du dĂ©placement normal Ă  la surface moyenne lors du dĂ©veloppement de la dĂ©formation dans le plan. La thĂ©orie de Sanders utilise la forme exacte des Ă©quations de « petites dĂ©formations » pour les dĂ©formations membranaires et un ensemble d’équations linĂ©arisĂ©es pour les changements des courbures et des torsions de la surface de rĂ©fĂ©rence. Plus rĂ©cemment, Nemeth a dĂ©veloppĂ© une thĂ©orie qui utilise les relations exactes non linĂ©aires de dĂ©formation-dĂ©placement avec des hypothĂšses de rotations modĂ©rĂ©es et de petites dĂ©formations. Cette thĂ©orie peut reproduire la thĂ©orie de Donnell et celle de Sanders en tant que cas particuliers, tout en offrant la possibilitĂ© de mener une Ă©tude comparative entre les prĂ©dictions de ces deux thĂ©ories. Les relations dĂ©formation-dĂ©placement peuvent ĂȘtre utilisĂ©es pour obtenir les Ă©quations d’équilibre et du mouvement des coques. La discrĂ©tisation de ces Ă©quations est faite en utilisant la mĂ©thode des Ă©lĂ©ments finis (MEF). Un avantage attrayant de cette mĂ©thode est sa flexibilitĂ© supĂ©rieure dans la gestion de diffĂ©rentes conditions aux limites. L’objectif de cette thĂšse est d’étudier les vibrations non linĂ©aires et le flottement supersonique des coques coniques tronquĂ©es. Une formulation par la MEF hybride est d’abord dĂ©veloppĂ©e sur la base de la solution exacte de la thĂ©orie amĂ©liorĂ©e de la premiĂšre approximation de Sanders pour les coquilles minces. Par la suite, les Ă©quations non linĂ©aires du mouvement des coques ont Ă©tĂ© obtenues en utilisant la mĂ©thode des coordonnĂ©es gĂ©nĂ©ralisĂ©es et des thĂ©ories de coques non linĂ©aires. Les coordonnĂ©es gĂ©nĂ©ralisĂ©es ont Ă©tĂ© choisies en fonction du dĂ©placement nodaux de la coque. L’interaction fluide-structure induite par l’écoulement supersonique a Ă©tĂ© modĂ©lisĂ©e en utilisant la thĂ©orie de piston. Les effets de raidissement dus aux charges axiales et Ă  la pression interne ont Ă©galement Ă©tĂ© modĂ©lisĂ©s en les exprimant en termes des dĂ©placements nodaux. Pour obtenir la rĂ©ponse non linĂ©aire de la vibration de la coque sans fluide, un algorithme a Ă©tĂ© dĂ©veloppĂ© basĂ© sur la mĂ©thode de rĂ©ponse harmonique modifiĂ©e et sur l’approche de Galerkin dans le domaine temporel. Cet algorithme peut fournir la frĂ©quence de vibration non linĂ©aire en fonction de la variation de l’amplitude de vibration. Une version amĂ©liorĂ©e du ce mĂȘme algorithme a Ă©galement Ă©tĂ© utilisĂ©e pour obtenir la rĂ©ponse de flottement supersonique. Le modĂšle dĂ©veloppĂ© et l’outil numĂ©rique ont la capacitĂ© d’effectuer les analyses suivantes: i) PrĂ©diction des vibrations naturelles linĂ©aires des coques coniques tronquĂ©es sous pression et/ou sous charges axiales. DiffĂ©rents schĂ©mas de conditions aux limites ont pu ĂȘtre Ă©tudiĂ©s et les prĂ©dictions obtenues sont en bon accord avec les rĂ©sultats expĂ©rimentaux rapportĂ©s dans la littĂ©rature. ii) PrĂ©diction du dĂ©but de divergence et du flottement linĂ©aire des coques coniques tronquĂ©es sous pression et/ou sous charges axiales pour diffĂ©rentes conditions aux limites. Les prĂ©dictions de cette mĂ©thode ont Ă©tĂ© validĂ©es positivement par des expĂ©riences sĂ©lectionnĂ©es dans la littĂ©rature. Les rĂ©servoirs sous pression se sont rĂ©vĂ©lĂ©s dĂ©stabilisĂ©s Ă  des pressions dynamiques plus Ă©levĂ©es. iii) PrĂ©diction des vibrations non linĂ©aires des coques coniques tronquĂ©es Ă  vide prĂ©dite par les thĂ©ories de Donnell, Sanders et Nemeth. La rĂ©ponse axisymĂ©trique des coques coniques tronquĂ©es Ă©tudiĂ©es a dĂ©montrĂ© un comportement de durcissement selon des courbes de l’épine dorsale. Dans les cas Ă©tudiĂ©s, bien que de lĂ©gĂšres diffĂ©rences entre la force des prĂ©dictions de la cinĂ©matique non linĂ©aire de Donnell et deux autres thĂ©ories aient pu ĂȘtre identifiĂ©es, il a Ă©tĂ© constatĂ© que les diffĂ©rences entre les prĂ©dictions des thĂ©ories de Sanders et de Nemeth sont nĂ©gligeables. Par consĂ©quent, en raison de son coĂ»t de calcul moins cher, la coniques tronquĂ©es. Une formulation par la MEF hybride est d’abord dĂ©veloppĂ©e sur la base de la solution exacte de la thĂ©orie amĂ©liorĂ©e de la premiĂšre approximation de Sanders pour les coquilles minces. Par la suite, les Ă©quations non linĂ©aires du mouvement des coques ont Ă©tĂ© obtenues en utilisant la mĂ©thode des coordonnĂ©es gĂ©nĂ©ralisĂ©es et des thĂ©ories de coques non linĂ©aires. Les coordonnĂ©es gĂ©nĂ©ralisĂ©es ont Ă©tĂ© choisies en fonction du dĂ©placement nodaux de la coque. L’interaction fluide-structure induite par l’écoulement supersonique a Ă©tĂ© modĂ©lisĂ©e en utilisant la thĂ©orie de piston. Les effets de raidissement dus aux charges axiales et Ă  la pression interne ont Ă©galement Ă©tĂ© modĂ©lisĂ©s en les exprimant en termes des dĂ©placements nodaux. Pour obtenir la rĂ©ponse non linĂ©aire de la vibration de la coque sans fluide, un algorithme a Ă©tĂ© dĂ©veloppĂ© basĂ© sur la mĂ©thode de rĂ©ponse harmonique modifiĂ©e et sur l’approche de Galerkin dans le domaine temporel. Cet algorithme peut fournir la frĂ©quence de vibration non linĂ©aire en fonction de la variation de l’amplitude de vibration. Une version amĂ©liorĂ©e du ce mĂȘme algorithme a Ă©galement Ă©tĂ© utilisĂ©e pour obtenir la rĂ©ponse de flottement supersonique. Le modĂšle dĂ©veloppĂ© et l’outil numĂ©rique ont la capacitĂ© d’effectuer les analyses suivantes: i) PrĂ©diction des vibrations naturelles linĂ©aires des coques coniques tronquĂ©es sous pression et/ou sous charges axiales. DiffĂ©rents schĂ©mas de conditions aux limites ont pu ĂȘtre Ă©tudiĂ©s et les prĂ©dictions obtenues sont en bon accord avec les rĂ©sultats expĂ©rimentaux rapportĂ©s dans la littĂ©rature. ii) PrĂ©diction du dĂ©but de divergence et du flottement linĂ©aire des coques coniques tronquĂ©es sous pression et/ou sous charges axiales pour diffĂ©rentes conditions aux limites. Les prĂ©dictions de cette mĂ©thode ont Ă©tĂ© validĂ©es positivement par des expĂ©riences sĂ©lectionnĂ©es dans la littĂ©rature. Les rĂ©servoirs sous pression se sont rĂ©vĂ©lĂ©s dĂ©stabilisĂ©s Ă  des pressions dynamiques plus Ă©levĂ©es. iii) PrĂ©diction des vibrations non linĂ©aires des coques coniques tronquĂ©es Ă  vide prĂ©dite par les thĂ©ories de Donnell, Sanders et Nemeth. La rĂ©ponse axisymĂ©trique des coques coniques tronquĂ©es Ă©tudiĂ©es a dĂ©montrĂ© un comportement de durcissement selon des courbes de l’épine dorsale. Dans les cas Ă©tudiĂ©s, bien que de lĂ©gĂšres diffĂ©rences entre la force des prĂ©dictions de la cinĂ©matique non linĂ©aire de Donnell et deux autres thĂ©ories aient pu ĂȘtre identifiĂ©es, il a Ă©tĂ© constatĂ© que les diffĂ©rences entre les prĂ©dictions des thĂ©ories de Sanders et de Nemeth sont nĂ©gligeables. Par consĂ©quent, en raison de son coĂ»t de calcul moins cher, la thĂ©orie de Sanders peut ĂȘtre utilisĂ©e pour les classes de coques Ă©tudiĂ©es dans les travaux en cours. iv) PrĂ©diction du comportement de flottement supersonique non linĂ©aire de cĂŽnes tronquĂ©s sous pression et/ou sous charges axiales pour les trois thĂ©ories non linĂ©aires susmentionnĂ©es. Pour les cas Ă©tudiĂ©s, la cinĂ©matique non linĂ©aire a diminuĂ© la stabilitĂ© de la coque lorsqu’elle est exposĂ©e au champ d’écoulement supersonique. Les vibrations non linĂ©aires et le flottement ont Ă©tĂ© validĂ©s par les cas rapportĂ©s de coques cylindriques, qui ont Ă©tĂ© simulĂ©es via un cĂŽne tronquĂ© avec un angle de cĂŽne trĂšs petit. L’application de la MEF permet la modĂ©lisation de diffĂ©rentes conditions aux limites et gĂ©omĂ©tries des coques coniques tronquĂ©es. Ce programme, en comparaison avec les logiciels commerciaux, est moins coĂ»teux en termes de calcul et il capable de modĂ©liser comportement non linĂ©aire qui reste une tĂąche difficile pour beaucoup de logiciel. ----------Abstract Conical shells have important applications in the design of a variety of aerospace vehicles, ranging from external fuel tanks of fighter jets to satellite launch vehicles. Hence, vibrational and aeroelastic analyses are important criteria in the design of these structures. Since experimental studies have reported that supersonic flutter occurs at amplitudes with the same order of magnitude as the thickness of the shell, geometrically nonlinear shell theories can provide a better and more accurate understanding of these problems. Different shell theories with different levels of approximation and simplifying assumptions for nonlinear kinematics have been developed in past decades, including Donnell’s, Sanders’ and Novozhilov’s shell theories. The differences between these theories mostly can be attributed to their different assumptions in the development of the strain-displacement relationship on the middle surface of the shell. Donnell’s theory introduced the secondorder nonlinear effect of normal-to-surface displacement in developing the in-plane strain. Sanders’ theory employed the exact form of the “small-strain” equations for the membrane strains and a set of linearized equations for the changes in the reference-surface curvature and torsions. More recently, Nemeth developed a theory that employed the exact nonlinear strain-displacement relations with presumptions of moderate rotations and small strains. This theory can reproduce Donnell’s and Sanders’ theories as an explicit subset while providing an opportunity to conduct a comparative study between the predictions of those theories. The strain-displacement relationships can be employed to obtain the equilibrium and equations of motion for shells.One important family of discretization of these equations is the finite elements method (FEM). One attractive advantage of the FEM is its superior flexibility in handling different boundary conditions. The objective of this thesis is to investigate the nonlinear vibration and supersonic flutter of truncated conical shells. In this thesis, a hybrid FEM formulation is first developed based on the exact solution of Sanders’ improved first-approximation theory for thin shells. Then, utilizing the generalized coordinates method and nonlinear shell theories, the nonlinear equations of motion for shells were obtained. The generalized coordinates were chosen in terms of the nodal displacement of the shell. Fluid structure interaction as a result of exposure to the supersonic flow was modeled using the piston theory. The effects of axial loads and internal pressure were also modeled in terms of nodal displacements. To obtain the nonlinear response of the shell’s vibration in vacuo, an algorithm was developed based on the modified harmonic response method that employed Galerkin’s approach in the time domain. This algorithm can provide the nonlinear vibration frequency as a result of the variation in vibration amplitude. An improved version of the same algorithm was also used to obtain the supersonic flutter response. The developed model and numerical tool have the capability to perform the following analyses: i) Prediction of linear natural vibration of pressurized truncated conical shells under axial loads. Different schemes for boundary conditions could be studied and the predictions found to be in good accordance with the experimental results reported in literature. ii) Prediction of linear flutter onset and divergence of pressurized truncated conical shells under axial loads under different boundary conditions. The predictions of this method were validated against selected experiments in the literature with good agreement. The pressurized shells were found to be destabilized at higher dynamic pressures. iii) Prediction of nonlinear vibration of truncated conical shells in vacuo predicted by Donnell’s, Sanders’ and Nemeth’s theories. The axisymmetric response of the studied truncated conical shells demonstrated a hardening behavior in the backbone curves. In the studied cases, while slight differences between the strength of predictions of Donnell’s nonlinear kinematics and two other theories could be identified, it was found that the differences between the predictions of Sanders’ and Nemeth’s theories were negligible. Hence, due to its less expensive computational cost, Sanders’ theory can be used for the classes of shells investigated in the current work. iv) Prediction of nonlinear supersonic flutter behavior of pressurized truncated conical shells under axial loads for three selected nonlinear theories. For the studied cases, the nonlinear kinematics decreased the shell’s stability when it was exposed to the supersonic flow field. Both nonlinear vibration and flutter were validated against reported cases of cylindrical shells, which were simulated via a truncated cone with a very small cone angle. The developed FEM application can be used to model different boundary conditions and geometries of truncated conical shells. Both nonlinear vibration and flutter were validated against reported cases of cylindrical shells which were simulated via a truncated cone with a very small cone angle. The developed FEM application can be used to model different boundary conditions and geometries of truncated conical shells. This program in comparison to general application commercial applications is computationally less expensive and can model nonlinear behaviors that are difficult to model with them

    Fatigue behaviour of load-bearing polymeric bone scaffolds: A review

    Get PDF
    Bone scaffolds play a crucial role in bone tissue engineering by providing mechanical support for the growth of new tissue while enduring static and fatigue loads. Although polymers possess favourable characteristics such as adjustable degradation rate, tissue-compatible stiffness, ease of fabrication, and low toxicity, their relatively low mechanical strength has limited their use in load-bearing applications. While numerous studies have focused on assessing the static strength of polymeric scaffolds, little research has been conducted on their fatigue properties. The current review presents a comprehensive study on the fatigue behaviour of polymeric bone scaffolds. The fatigue failure in polymeric scaffolds is discussed and the impact of material properties, topological features, loading conditions, and environmental factors are also examined. The present review also provides insight into the fatigue damage evolution within polymeric scaffolds, drawing comparisons to the behaviour observed in natural bone. Additionally, the effect of polymer microstructure, incorporating reinforcing materials, the introduction of topological features, and hydrodynamic/corrosive impact of body fluids in the fatigue life of scaffolds are discussed. Understanding these parameters is crucial for enhancing the fatigue resistance of polymeric scaffolds and holds promise for expanding their application in clinical settings as structural biomaterials. Statement of Significance: Polymers have promising advantages for bone tissue engineering, including adjustable degradation rates, compatibility with native bone stiffness, ease of fabrication, and low toxicity. However, their limited mechanical strength has hindered their use in load-bearing scaffolds for clinical applications. While prior studies have addressed static behaviour of polymeric scaffolds, a comprehensive review of their fatigue performance is lacking. This review explores this gap, addressing fatigue characteristics, failure mechanisms, and the influence of parameters like material properties, topological features, loading conditions, and environmental factors. It also examines microstructure, reinforcement materials, pore architectures, body fluids, and tissue ingrowth effects on fatigue behaviour. A significant emphasis is placed on understanding fatigue damage progression in polymeric scaffolds, comparing it to natural bone behaviour

    Nonlinear vibration of truncated conical shells : Donnell, Sanders and Nemeth theories

    Get PDF
    The formulation of nonlinear kinematics of shells in three different shell theories namely Donnell, Sanders and Nemeth including shear deformation for anisotropic materials is presented. A finite element solution for the equilibrium equations of Sander’s improved first-approximation theory is developed and has been used to develop the nonlinear finite element amplitude equation of vibration of conical shells of Donnell, Sanders and Nemeth theories using generalized coordinates methods and Lagrange equations of motions. The amplitude equation of nonlinear vibration of conical shell has been solved for multiple cases of isotropic materials with neglecting the shear deformation. Linear vibration frequencies for different conical shells with different materials, geometry and boundary conditions are validated against the existing experimental data in the literature and show excellent agreement. The nonlinear vibration results have been validated against the existing data for cylindrical shells and demonstrate good accordance. The validated model has been used to investigate effect of different parameters including circumferential mode number, cone-half angle, length to radius ratio, thickness to radius ratio and boundary conditions

    Effect of oral tizanidine on prolongation of intrathecal lidocaine

    Get PDF
    Objective: In order to prolong the duration of intrathecal lidocaine, various drugs are used along with it. Due to the promising effects of tizanidine on central nervous system, it can be assumed that tizanidine can have a positive effect on increasing the anesthesia duration too. Thus, we aimed to investigate the effect of oral tizanidine on the duration of lidocaine spinal anesthesia. Methods: This double blind clinical trial was conducted on 40 male patients waiting for elective leg surgery with the age range of 20-60 years in one of the educational hospitals of Kerman University of Medical Sciences, Iran. We used simple random sampling and our participants were assigned into 2 groups (placebo and oral tizanidine receivers). Spinal anesthesia with 1 mg/kg of hyperbaric lidocaine 5% was performed in both groups. In tizanidine group, patients received 4 mg of oral tizanidine one hour before spinal anesthesia. Sensory block was examined by pin prick test and all anesthetic duration including start block until reduction of sensory level was calculated at 2 lower dermatomes. Results: Findings showed that oral tizanidine compared to placebo can cause a 10-15 minute increase in patients’ lidocaine spinal anesthesia. Therefore, the average anesthesia time for tizanidine group increased meaningfully (P = 0.03). In addition, tizanidine can sedate patients during surgery (P = 0.00) or in recovery (P = 0.003). Conclusion: Based on the results, tizanidine increased the duration of lidocaine so oral tizanidine can be used to prolong the duration of lidocaine spinal anesthesia

    First evidence of the presence of adenovirus type 8 in myocardium of patients with severe idiopathic dilated cardiomyopathy

    Get PDF
    Previous studies have detected adenovirus and cytomegalovirus (CMV) in cardiac tissue of patients with myocarditis. Therefore, in this study, we investigated the frequency of these viruses, which may be involved in the development of severe dilated cardiomyopathy (DCM). Myocardial tissue from of 23 cardiac transplant candidates with acute idiopathic DCM below the age of 40 years were analyzed by amplification of adenovirus and CMV DNA and subsequent sequencing. Adenovirus was detected in four (17.4%) and CMV in one (4.3%) of the patients. All controls were negative for the presence of both viruses. Our study shows that myocardial infection with adenovirus may play an important role in the pathogenesis of severe DCM and suggests that vaccination against adenovirus might be helpful in decreasing the prevalence of severe idiopathic DCM. This is the first study in which adenovirus type 8 has been detected in the hearts of patients with DCM

    Identifying the favored mutation in a positive selective sweep.

    Get PDF
    Most approaches that capture signatures of selective sweeps in population genomics data do not identify the specific mutation favored by selection. We present iSAFE (for "integrated selection of allele favored by evolution"), a method that enables researchers to accurately pinpoint the favored mutation in a large region (∌5 Mbp) by using a statistic derived solely from population genetics signals. iSAFE does not require knowledge of demography, the phenotype under selection, or functional annotations of mutations
    corecore